Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Pathol ; 261(2): 139-155, 2023 10.
Article in English | MEDLINE | ID: mdl-37555362

ABSTRACT

Within the pancreas, Keratin 19 (KRT19) labels the ductal lineage and is a determinant of pancreatic ductal adenocarcinoma (PDAC). To investigate KRT19 expression dynamics, we developed a human pluripotent stem cell (PSC)-based KRT19-mCherry reporter system in different genetic backgrounds to monitor KRT19 expression from its endogenous gene locus. A differentiation protocol to generate mature pancreatic duct-like organoids was applied. While KRT19/mCherry expression became evident at the early endoderm stage, mCherry signal was present in nearly all cells at the pancreatic endoderm (PE) and pancreatic progenitor (PP) stages. Interestingly, despite homogenous KRT19 expression, mCherry positivity dropped to 50% after ductal maturation, indicating a permanent switch from biallelic to monoallelic expression. DNA methylation profiling separated the distinct differentiation intermediates, with site-specific DNA methylation patterns occurring at the KRT19 locus during ductal maturation. Accordingly, the monoallelic switch was partially reverted upon treatment with a DNA-methyltransferase inhibitor. In human PDAC cohorts, high KRT19 levels correlate with low locus methylation and decreased survival. At the same time, activation of oncogenic KRASG12D signalling in our reporter system reversed monoallelic back to biallelic KRT19 expression in pancreatic duct-like organoids. Allelic reactivation was also detected in single-cell transcriptomes of human PDACs, which further revealed a positive correlation between KRT19 and KRAS expression. Accordingly, KRAS mutant PDACs had higher KRT19 mRNA but lower KRT19 gene locus DNA methylation than wildtype counterparts. KRT19 protein was additionally detected in plasma of PDAC patients, with higher concentrations correlating with shorter progression-free survival in gemcitabine/nabPaclitaxel-treated and opposing trends in FOLFIRINOX-treated patients. Apart from being an important pancreatic ductal lineage marker, KRT19 appears tightly controlled via a switch from biallelic to monoallelic expression during ductal lineage entry and is aberrantly expressed after oncogenic KRASG12D expression, indicating a role in PDAC development and malignancy. Soluble KRT19 might serve as a relevant biomarker to stratify treatment. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols , Keratin-19/genetics , Keratin-19/metabolism , DNA Methylation , Proto-Oncogene Proteins p21(ras)/genetics , Carcinogenesis/genetics , Carcinoma, Pancreatic Ductal/pathology , Gene Expression , Pancreatic Neoplasms
2.
Theranostics ; 13(6): 1949-1973, 2023.
Article in English | MEDLINE | ID: mdl-37064874

ABSTRACT

Rationale: Pancreatic lineage specification follows the formation of tripotent pancreatic progenitors (PPs). Current protocols rebuilding PPs in vitro have an endocrine lineage bias and are mostly based on PDX1/NKX6-1 coexpression neglecting other markers decisive for PP heterogeneity and lineage potential. However, true tripotent PPs are of utmost interest to study also exocrine disorders such as pancreatic cancer and to simultaneously generate all three pancreatic lineages from the same ancestor. Methods: Here, we performed a comprehensive compound testing to advance the generation of multipotent progenitors, which were further characterized for their trilineage potential in vitro and in vivo. The heterogeneity and cell-cell communication across the PP subpopulations were analyzed via single-cell transcriptomics. Results: We introduce a novel PP differentiation platform based on a comprehensive compound screening with an advanced design of experiments computing tool to reduce impurities and to increase Glycoprotein-2 expression and subsequent trilineage potential. Superior PP tripotency was proven in vitro by the generation of acinar, endocrine, and ductal cells as well as in vivo upon orthotopic transplantation revealing all three lineages at fetal maturation level. GP2 expression levels at PP stage ascribed varying pancreatic lineage potential. Intermediate and high GP2 levels were superior in generating endocrine and duct-like organoids (PDLO). FACS-based purification of the GP2high PPs allowed the generation of pancreatic acinar-like organoids (PALO) with proper morphology and expression of digestive enzymes. scRNA-seq confirmed multipotent identity, positioned the GP2/PDX1/NKX6-1high population next to human fetal tip and trunk progenitors and identified novel ligand-receptor (LR) interactions in distinct PP subpopulations. LR validation experiments licensed midkine and VEGF signaling to increase markers labelling the single cell clusters with high GP2 expression. Conclusion: In this study, we guide human pluripotent stem cells into multipotent pancreatic progenitors. This common precursor population, which has the ability to mature into acinar, ductal and functional ß-cells, serves as a basis for studying developmental processes and deciphering early cancer formation in a cell type-specific context. Using single-cell RNA sequencing and subsequent validation studies, we were able to dissect PP heterogeneity and specific cell-cell communication signals.


Subject(s)
Insulin-Secreting Cells , Pluripotent Stem Cells , Humans , Pancreas/metabolism , Cell Differentiation/physiology , Insulin-Secreting Cells/metabolism , Organoids
3.
Cell Rep ; 38(13): 110604, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354033

ABSTRACT

Primary human hepatocytes are widely used to evaluate liver toxicity of drugs, but they are scarce and demanding to culture. Stem cell-derived hepatocytes are increasingly discussed as alternatives. To obtain a better appreciation of the molecular processes during the differentiation of induced pluripotent stem cells into hepatocytes, we employ a quantitative proteomic approach to follow the expression of 9,000 proteins, 12,000 phosphorylation sites, and 800 acetylation sites over time. The analysis reveals stage-specific markers, a major molecular switch between hepatic endoderm versus immature hepatocyte-like cells impacting, e.g., metabolism, the cell cycle, kinase activity, and the expression of drug transporters. Comparing the proteomes of two- (2D) and three-dimensional (3D)-derived hepatocytes with fetal and adult liver indicates a fetal-like status of the in vitro models and lower expression of important ADME/Tox proteins. The collective data enable constructing a molecular roadmap of hepatocyte development that serves as a valuable resource for future research.


Subject(s)
Induced Pluripotent Stem Cells , Proteome , Adult , Cell Differentiation , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Proteome/metabolism , Proteomics
4.
Cells ; 11(3)2022 02 08.
Article in English | MEDLINE | ID: mdl-35159392

ABSTRACT

Human pluripotent stem cells, with their ability to proliferate indefinitely and to differentiate into virtually all cell types of the human body, provide a novel resource to study human development and to implement relevant disease models. Here, we employed a human pancreatic differentiation platform complemented with an shRNA screen in human pluripotent stem cells (PSCs) to identify potential drivers of early endoderm and pancreatic development. Deep sequencing followed by abundancy ranking pinpointed six top hit genes potentially associated with either improved or impaired endodermal differentiation, which were selected for functional validation in CRISPR-Cas9 mediated knockout (KO) lines. Upon endoderm differentiation (DE), particularly the loss of SLC22A1 and DSC2 led to impaired differentiation efficiency into CXCR4/KIT-positive DE cells. qPCR analysis also revealed changes in differentiation markers CXCR4, FOXA2, SOX17, and GATA6. Further differentiation of PSCs to the pancreatic progenitor (PP) stage resulted in a decreased proportion of PDX1/NKX6-1-positive cells in SLC22A1 KO lines, and in DSC2 KO lines when differentiated under specific culture conditions. Taken together, our study reveals novel genes with potential roles in early endodermal development.


Subject(s)
Endoderm , Pluripotent Stem Cells , Cell Differentiation/genetics , Genomics , Humans , Pancreas/metabolism , Pluripotent Stem Cells/metabolism
5.
Adv Healthc Mater ; 11(11): e2102345, 2022 06.
Article in English | MEDLINE | ID: mdl-35114730

ABSTRACT

Despite intensive research and progress in personalized medicine, pancreatic ductal adenocarcinoma remains one of the deadliest cancer entities. Pancreatic duct-like organoids (PDLOs) derived from human pluripotent stem cells (PSCs) or pancreatic cancer patient-derived organoids (PDOs) provide unique tools to study early and late stage dysplasia and to foster personalized medicine. However, such advanced systems are neither rapidly nor easily accessible and require an in vivo niche to study tumor formation and interaction with the stroma. Here, the establishment of the porcine urinary bladder (PUB) is revealed as an advanced organ culture model for shaping an ex vivo pancreatic niche. This model allows pancreatic progenitor cells to enter the ductal and endocrine lineages, while PDLOs further mature into duct-like tissue. Accordingly, the PUB offers an ex vivo platform for earliest pancreatic dysplasia and cancer if PDLOs feature KRASG12D mutations. Finally, it is demonstrated that PDOs-on-PUB i) resemble primary pancreatic cancer, ii) preserve cancer subtypes, iii) enable the study of niche epithelial crosstalk by spiking in pancreatic stellate and immune cells into the grafts, and finally iv) allow drug testing. In summary, the PUB advances the existing pancreatic cancer models by adding feasibility, complexity, and customization at low cost and high flexibility.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pluripotent Stem Cells , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Humans , Organoids/pathology , Pancreatic Neoplasms/pathology , Swine , Urinary Bladder , Pancreatic Neoplasms
6.
STAR Protoc ; 3(4): 101869, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36595896

ABSTRACT

Ex vivo organ culture can be a useful alternative to in vivo models, which can be time-, labor-, and cost-intensive. Here we describe a step-by-step protocol to use de-epithelialized porcine urinary bladders as scaffolds in air-liquid interface in vitro culture systems for a variety of pluripotent stem-cell-derived and patient-derived pancreatic cells and organoids. The scaffold can trigger cell maturation and enable cell-cell interaction and invasion capacity studies. However, this model is limited by the lack of functional vasculature. For complete details on the use and execution of this protocol, please refer to Melzer et al. (2022),1 Breunig et al. (2021),2 and Breunig et al. (2021).3.


Subject(s)
Pluripotent Stem Cells , Urinary Bladder , Swine , Animals , Urinary Bladder/surgery , Tissue Scaffolds , Cell Differentiation , Organoids
7.
STAR Protoc ; 2(4): 100913, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34917972

ABSTRACT

The recapitulation of human developmental processes and pathological manifestations requires access to specific cell types and precursor stages during embryogenesis and disease. Here, we describe a scalable in vitro differentiation protocol to guide human pluripotent stem cells stepwise into pancreatic duct-like organoids. The protocol mimics pancreatic duct development and was successfully used to model the onset and progression of pancreatic ductal adenocarcinoma; the approach is suitable for multiple downstream applications. However, the protocol is cost- and time-intensive. For complete details on the use and execution of this protocol, please refer to Breunig et al. (2021).


Subject(s)
Cell Culture Techniques/methods , Pancreatic Ducts/cytology , Pluripotent Stem Cells/cytology , Cell Differentiation/physiology , Cell Line , Humans , Organoids/cytology
8.
Commun Biol ; 4(1): 1298, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789845

ABSTRACT

Cell type specification during pancreatic development is tightly controlled by a transcriptional and epigenetic network. The precise role of most transcription factors, however, has been only described in mice. To convey such concepts to human pancreatic development, alternative model systems such as pancreatic in vitro differentiation of human pluripotent stem cells can be employed. Here, we analyzed stage-specific RNA-, ChIP-, and ATAC-sequencing data to dissect transcriptional and regulatory mechanisms during pancreatic development. Transcriptome and open chromatin maps of pancreatic differentiation from human pluripotent stem cells provide a stage-specific pattern of known pancreatic transcription factors and indicate ONECUT1 as a crucial fate regulator in pancreas progenitors. Moreover, our data suggest that ONECUT1 is also involved in preparing pancreatic progenitors for later endocrine specification. The dissection of the transcriptional and regulatory circuitry revealed an important role for ONECUT1 within such network and will serve as resource to study human development and disease.


Subject(s)
Hepatocyte Nuclear Factor 6/genetics , Pancreas/physiology , Cell Differentiation , Cell Line , Gene Expression Regulation, Developmental , Hepatocyte Nuclear Factor 6/metabolism , Human Embryonic Stem Cells , Humans , Transcription, Genetic
9.
Cancers (Basel) ; 13(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34680288

ABSTRACT

Patient-derived induced pluripotent stem cells (iPSCs) provide a unique platform to study hereditary disorders and predisposition syndromes by resembling germline mutations of affected individuals and by their potential to differentiate into nearly every cell type of the human body. We employed plucked human hair from two siblings with a family history of cancer carrying a pathogenic CDKN2A variant, P16-p.G101W/P14-p.R115L, to generate patient-specific iPSCs in a cancer-prone ancestry for downstream analytics. The differentiation capacity to pancreatic progenitors and to pancreatic duct-like organoids (PDLOs) according to a recently developed protocol remained unaffected. Upon inducible expression of KRASG12Dusing a piggyBac transposon system in CDKN2A-mutated PDLOs, we revealed structural and molecular changes in vitro, including disturbed polarity and epithelial-to-mesenchymal (EMT) transition. CDKN2A-mutated KRASG12DPDLO xenotransplants formed either a high-grade precancer lesion or a partially dedifferentiated PDAC-like tumor. Intriguingly, P14/P53/P21 and P16/RB cell-cycle checkpoint controls have been only partly overcome in these grafts, thereby still restricting the tumorous growth. Hereby, we provide a model for hereditary human pancreatic cancer that enables dissection of tumor initiation and early development starting from patient-specific CDKN2A-mutated pluripotent stem cells.

10.
Nat Med ; 27(11): 1928-1940, 2021 11.
Article in English | MEDLINE | ID: mdl-34663987

ABSTRACT

Genes involved in distinct diabetes types suggest shared disease mechanisms. Here we show that One Cut Homeobox 1 (ONECUT1) mutations cause monogenic recessive syndromic diabetes in two unrelated patients, characterized by intrauterine growth retardation, pancreas hypoplasia and gallbladder agenesis/hypoplasia, and early-onset diabetes in heterozygous relatives. Heterozygous carriers of rare coding variants of ONECUT1 define a distinctive subgroup of diabetic patients with early-onset, nonautoimmune diabetes, who respond well to diabetes treatment. In addition, common regulatory ONECUT1 variants are associated with multifactorial type 2 diabetes. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation and a subsequent endocrine program. Loss of ONECUT1 altered transcription factor binding and enhancer activity and NKX2.2/NKX6.1 expression in pancreatic progenitor cells. Collectively, we demonstrate that ONECUT1 controls a transcriptional and epigenetic machinery regulating endocrine development, involved in a spectrum of diabetes, encompassing monogenic (recessive and dominant) as well as multifactorial inheritance. Our findings highlight the broad contribution of ONECUT1 in diabetes pathogenesis, marking an important step toward precision diabetes medicine.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Hepatocyte Nuclear Factor 6/genetics , Pancreas/embryology , Cell Differentiation/genetics , Congenital Abnormalities/genetics , Fetal Growth Retardation/genetics , Gallbladder/abnormalities , Homeobox Protein Nkx-2.2/biosynthesis , Homeodomain Proteins/biosynthesis , Humans , Infant , Infant, Newborn , Male , Multifactorial Inheritance/genetics , Organogenesis/genetics , Pancreas/abnormalities , Pancreatic Diseases/congenital , Pancreatic Diseases/genetics , Pluripotent Stem Cells/cytology , Transcription, Genetic/genetics
11.
Nat Biomed Eng ; 5(8): 897-913, 2021 08.
Article in English | MEDLINE | ID: mdl-34239116

ABSTRACT

Creating in vitro models of diseases of the pancreatic ductal compartment requires a comprehensive understanding of the developmental trajectories of pancreas-specific cell types. Here we report the single-cell characterization of the differentiation of pancreatic duct-like organoids (PDLOs) from human induced pluripotent stem cells (hiPSCs) on a microwell chip that facilitates the uniform aggregation and chemical induction of hiPSC-derived pancreatic progenitors. Using time-resolved single-cell transcriptional profiling and immunofluorescence imaging of the forming PDLOs, we identified differentiation routes from pancreatic progenitors through ductal intermediates to two types of mature duct-like cells and a few non-ductal cell types. PDLO subpopulations expressed either mucins or the cystic fibrosis transmembrane conductance regulator, and resembled human adult duct cells. We also used the chip to uncover ductal markers relevant to pancreatic carcinogenesis, and to establish PDLO co-cultures with stellate cells, which allowed for the study of epithelial-mesenchymal signalling. The PDLO microsystem could be used to establish patient-specific pancreatic duct models.


Subject(s)
Cell Differentiation , Lab-On-A-Chip Devices , Organoids/cytology , Pancreatic Ducts/cytology , Animals , Biomarkers, Tumor/metabolism , Cellular Reprogramming , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Filamins/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Mice , Mice, Inbred NOD , Mice, SCID , Mucins/metabolism , Organoids/metabolism , Pancreatic Ducts/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Single-Cell Analysis , Survival Rate
12.
Cell Stem Cell ; 28(6): 1105-1124.e19, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33915078

ABSTRACT

Personalized in vitro models for dysplasia and carcinogenesis in the pancreas have been constrained by insufficient differentiation of human pluripotent stem cells (hPSCs) into the exocrine pancreatic lineage. Here, we differentiate hPSCs into pancreatic duct-like organoids (PDLOs) with morphological, transcriptional, proteomic, and functional characteristics of human pancreatic ducts, further maturing upon transplantation into mice. PDLOs are generated from hPSCs inducibly expressing oncogenic GNAS, KRAS, or KRAS with genetic covariance of lost CDKN2A and from induced hPSCs derived from a McCune-Albright patient. Each oncogene causes a specific growth, structural, and molecular phenotype in vitro. While transplanted PDLOs with oncogenic KRAS alone form heterogenous dysplastic lesions or cancer, KRAS with CDKN2A loss develop dedifferentiated pancreatic ductal adenocarcinomas. In contrast, transplanted PDLOs with mutant GNAS lead to intraductal papillary mucinous neoplasia-like structures. Conclusively, PDLOs enable in vitro and in vivo studies of pancreatic plasticity, dysplasia, and cancer formation from a genetically defined background.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pluripotent Stem Cells , Animals , Humans , Mice , Mutation , Organoids , Pancreatic Ducts , Pancreatic Neoplasms/genetics , Proteomics
13.
Nat Metab ; 3(2): 149-165, 2021 02.
Article in English | MEDLINE | ID: mdl-33536639

ABSTRACT

Infection-related diabetes can arise as a result of virus-associated ß-cell destruction. Clinical data suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), impairs glucose homoeostasis, but experimental evidence that SARS-CoV-2 can infect pancreatic tissue has been lacking. In the present study, we show that SARS-CoV-2 infects cells of the human exocrine and endocrine pancreas ex vivo and in vivo. We demonstrate that human ß-cells express viral entry proteins, and SARS-CoV-2 infects and replicates in cultured human islets. Infection is associated with morphological, transcriptional and functional changes, including reduced numbers of insulin-secretory granules in ß-cells and impaired glucose-stimulated insulin secretion. In COVID-19 full-body postmortem examinations, we detected SARS-CoV-2 nucleocapsid protein in pancreatic exocrine cells, and in cells that stain positive for the ß-cell marker NKX6.1 and are in close proximity to the islets of Langerhans in all four patients investigated. Our data identify the human pancreas as a target of SARS-CoV-2 infection and suggest that ß-cell infection could contribute to the metabolic dysregulation observed in patients with COVID-19.


Subject(s)
Islets of Langerhans/virology , SARS-CoV-2/growth & development , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/genetics , COVID-19/physiopathology , Cells, Cultured , Diabetes Mellitus , Female , Humans , Islets of Langerhans/cytology , Islets of Langerhans/physiopathology , Male , Pancreas, Exocrine/cytology , Pancreas, Exocrine/physiopathology , Pancreas, Exocrine/virology , Pancreatic Diseases/etiology , Pancreatic Diseases/virology , Serine Endopeptidases/biosynthesis , Serine Endopeptidases/genetics , Virus Internalization , Virus Replication
14.
United European Gastroenterol J ; 8(5): 594-606, 2020 06.
Article in English | MEDLINE | ID: mdl-32213029

ABSTRACT

BACKGROUND: Organotypic cultures derived from pancreatic ductal adenocarcinoma (PDAC) termed pancreatic ductal cancer organoids (PDOs) recapitulate the primary cancer and can be derived from primary or metastatic biopsies. Although isolation and culture of patient-derived pancreatic organoids were established several years ago, pros and cons for individualized medicine have not been comprehensively investigated to date. METHODS: We conducted a feasibility study, systematically comparing head-to-head patient-derived xenograft tumor (PDX) and PDX-derived organoids by rigorous immunohistochemical and molecular characterization. Subsequently, a drug testing platform was set up and validated in vivo. Patient-derived organoids were investigated as well. RESULTS: First, PDOs faithfully recapitulated the morphology and marker protein expression patterns of the PDXs. Second, quantitative proteomes from the PDX as well as from corresponding organoid cultures showed high concordance. Third, genomic alterations, as assessed by array-based comparative genomic hybridization, revealed similar results in both groups. Fourth, we established a small-scale pharmacotyping platform adjusted to operate in parallel considering potential obstacles such as culture conditions, timing, drug dosing, and interpretation of the results. In vitro predictions were successfully validated in an in vivo xenograft trial. Translational proof-of-concept is exemplified in a patient with PDAC receiving palliative chemotherapy. CONCLUSION: Small-scale drug screening in organoids appears to be a feasible, robust and easy-to-handle disease modeling method to allow response predictions in parallel to daily clinical routine. Therefore, our fast and cost-efficient assay is a reasonable approach in a predictive clinical setting.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal/drug therapy , Drug Screening Assays, Antitumor/methods , Organoids/drug effects , Pancreatic Neoplasms/drug therapy , Adult , Animals , Antineoplastic Agents/therapeutic use , Biopsy , Carcinoma, Pancreatic Ductal/pathology , Cell Culture Techniques/methods , Cell Survival/drug effects , Feasibility Studies , Female , Humans , Male , Mice , Organoids/pathology , Pancreas/cytology , Pancreas/pathology , Pancreatic Neoplasms/pathology , Proof of Concept Study , Xenograft Model Antitumor Assays
15.
Stem Cells Int ; 2019: 2079742, 2019.
Article in English | MEDLINE | ID: mdl-31236113

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is still the Achilles heel in modern oncology, with an increasing incidence accompanied by a persisting high mortality. The developmental process of PDAC is thought to be stepwise via precursor lesions and sequential accumulation of mutations. Thereby, current sequencing studies recapitulate this genetic heterogeneity in PDAC and show besides a handful of driver mutations (KRAS, TP53) a plethora of passenger mutations that allow to define subtypes. However, modeling the mutations of interest and their effects is still challenging. Interestingly, organoids have the potential to recapitulate in vitro, the in vivo characteristics of the tissue they originate from. Here, we could establish and develop tools allowing us to isolate, culture, and genetically modify ductal mouse organoids. Transferred to known effectors in the IPMN-PDAC sequence, we could reveal significantly increased proliferative and self-renewal capacities for PTEN and RNF43 deficiency in the context of oncogenic KRASG12D in mouse pancreatic organoids. Overall, we were able to obtain promising data centering ductal organoids in the focus of future PDAC research.

16.
Sci Rep ; 7(1): 16543, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29185460

ABSTRACT

Pluripotency can be induced in vitro from adult somatic mammalian cells by enforced expression of defined transcription factors regulating and initiating the pluripotency network. Despite the substantial advances over the last decade to improve the efficiency of direct reprogramming, exact mechanisms underlying the conversion into the pluripotent stem cell state are still vaguely understood. Several studies suggested that induced pluripotency follows reversed embryonic development. For somatic cells of mesodermal and endodermal origin that would require the transition through a Primitive streak-like state, which would necessarily require an Eomesodermin (Eomes) expressing intermediate. We analyzed reprogramming in human and mouse cells of mesodermal as well as ectodermal origin by thorough marker gene analyses in combination with genetic reporters, conditional loss of function and stable fate-labeling for the broad primitive streak marker Eomes. We unambiguously demonstrate that induced pluripotency is not dependent on a transient primitive streak-like stage and thus does not represent reversal of mesendodermal development in vivo.


Subject(s)
Cellular Reprogramming/genetics , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Primitive Streak/cytology , Primitive Streak/metabolism , T-Box Domain Proteins/metabolism , Animals , Cellular Reprogramming/physiology , Ectoderm/cytology , Ectoderm/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mesoderm/cytology , Mesoderm/metabolism , Mice , T-Box Domain Proteins/genetics
17.
Gut ; 66(3): 473-486, 2017 03.
Article in English | MEDLINE | ID: mdl-27633923

ABSTRACT

OBJECTIVE: The generation of acinar and ductal cells from human pluripotent stem cells (PSCs) is a poorly studied process, although various diseases arise from this compartment. DESIGN: We designed a straightforward approach to direct human PSCs towards pancreatic organoids resembling acinar and ductal progeny. RESULTS: Extensive phenotyping of the organoids not only shows the appropriate marker profile but also ultrastructural, global gene expression and functional hallmarks of the human pancreas in the dish. Upon orthotopic transplantation into immunodeficient mice, these organoids form normal pancreatic ducts and acinar tissue resembling fetal human pancreas without evidence of tumour formation or transformation. Finally, we implemented this unique phenotyping tool as a model to study the pancreatic facets of cystic fibrosis (CF). For the first time, we provide evidence that in vitro, but also in our xenograft transplantation assay, pancreatic commitment occurs generally unhindered in CF. Importantly, cystic fibrosis transmembrane conductance regulator (CFTR) activation in mutated pancreatic organoids not only mirrors the CF phenotype in functional assays but also at a global expression level. We also conducted a scalable proof-of-concept screen in CF pancreatic organoids using a set of CFTR correctors and activators, and established an mRNA-mediated gene therapy approach in CF organoids. CONCLUSIONS: Taken together, our platform provides novel opportunities to model pancreatic disease and development, screen for disease-rescuing agents and to test therapeutic procedures.


Subject(s)
Cystic Fibrosis/therapy , Disease Models, Animal , Organoids/growth & development , Organoids/transplantation , Pancreas/cytology , RNA, Messenger/therapeutic use , Acinar Cells/cytology , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Gene Expression Profiling , Genetic Therapy , Humans , Mice , Organoids/cytology , Organoids/metabolism , Pancreas/growth & development , Pancreas/metabolism , Pancreatic Ducts/cytology , Phenotype , Pluripotent Stem Cells
18.
J Cell Sci ; 129(8): 1685-96, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26940917

ABSTRACT

Actin and actin-associated proteins have a pivotal effect on regulated exocytosis in secretory cells and influence pre-fusion as well as post-fusion stages of exocytosis. Actin polymerization on secretory granules during the post-fusion phase (formation of an actin coat) is especially important in cells with large secretory vesicles or poorly soluble secretions. Alveolar type II (ATII) cells secrete hydrophobic lipo-protein surfactant, which does not easily diffuse from fused vesicles. Previous work showed that compression of actin coat is necessary for surfactant extrusion. Here, we investigate the role of class 1 myosins as possible linkers between actin and membranes during exocytosis. Live-cell microscopy showed translocation of fluorescently labeled myosin 1b and myosin 1c to the secretory vesicle membrane after fusion. Myosin 1c translocation was dependent on its pleckstrin homology domain. Expression of myosin 1b and myosin 1c constructs influenced vesicle compression rate, whereas only the inhibition of myosin 1c reduced exocytosis. These findings suggest that class 1 myosins participate in several stages of ATII cell exocytosis and link actin coats to the secretory vesicle membrane to influence vesicle compression.


Subject(s)
Alveolar Epithelial Cells/physiology , Exocytosis , Myosin Type I/metabolism , Secretory Vesicles/physiology , Actin Cytoskeleton/metabolism , Animals , Bodily Secretions , Cells, Cultured , Exocytosis/genetics , Male , Membrane Fusion/genetics , Myosin Type I/genetics , Pulmonary Surfactants/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...